IH 35E (STEMMONS FWY)
IH 30 (Tom Landry Hwy) to SH 183 (Airport Fwy)

Current Conditions
IH 35E Stemmons Freeway was Dallas-Fort Worth's first modern, large-sized freeway when it opened in 1959. Fifty years later it remains DFW's widest freeway for a sustained distance, 10 lanes in some segments. In the early 1990s, the inside shoulder was converted to a travel lane to help relieve congestion. Traffic congestion along IH 35E follows an unusual outbound morning/inbound evening pattern. However, the evening rush hour travels much slower than the morning period.
- Segment Length: 5.5 miles.
- Road Type: 10-lane freeway.
- Annual Hours of Delay: 2,604,000.
- Texas Congestion Index: 1.76.
- Commuter Stress Index: 2.18.

Additional freeway/HOV/managed lane capacity has been recommended in this corridor since 1986 in Mobility 2000. A subarea study was undertaken in 1989 that refined the recommended improvement strategy. Since that time, this portion of IH 35E was included in the Trinity Parkway Major Investment Study (conducted 1996–1998) that also confirmed the need for additional freeway and managed lane capacity.

Possible Congestion Causes
Most of the freeway is still in its originally-constructed configuration. The corridor has two major highway segments (IH 35E and SH 183) converging on the northern end, and interchange with the Dallas North Tollway and four major highways (SP 366, IH 30 east and west, and IH 35E south) converging on the southern end in the downtown Dallas area. The corridor serves the Dallas Design district, the region's second major airport Love Field, three major hospital complexes, a sports arena, and the central business district (CBD).

Projects in Progress or Completed
Project Pegasus
The Woodall Rodgers Extension, part of the Trinity Parkway MTIS, was constructed as a 6-lane road from the CBD to west Dallas. The construction completed in 2012 extended Woodall Rogers westward from its previous terminus at IH 35E across the Trinity River via
the Margaret Hunt Hill bridge to the Beckley Avenue/Singleton Boulevard Intersection.

Transit Service
The DART Green and Orange Lines run parallel to the facility with four stations along the corridor. The Green Line serves 4,800 average weekday riders. The Orange Line provides select service during peak weekday hours. The Trinity Railway Express (TRE) runs parallel to the facility from Medical/Market Center to Union Station and serves 8,680 passenger trips per weekday.

DART bus service operates 20 routes in the corridor, including shuttle service to UT Southwestern.

Incident Management
The Regional Freeway Incident Management Program operates in the corridor. This corridor currently has ITS technology deployed for incident detection and management. The police and fire departments in the City of Dallas and the Dallas County Sheriff’s Office have participated in Freeway Incident Management training, as well as photogrammetry training. Photogrammetry allows investigators to map a crash scene in significantly less time than traditional methods and results in up to 50 percent of average time saved per road closing crash scene.

Traffic Signals
Regional traffic signalization improvement program has been implemented on major streets in the corridor.

Demand Reduction
The Regional Employer Trip Reduction Program is a voluntary program that is designed to reduce employee commute vehicle trips through the education and implementation of travel demand management strategies such as rideshare programs (carpooling and vanpooling), telecommuting and flexible work-hour programs, transit pass subsidies, bicycling, and similar strategies. It is a cooperative program between North Central Texas Council of Governments (NCTCOG), DART, Fort Worth Transportation Authority (The T), Denton County Transit Authority (DCTA), North Texas Clean Air Coalition (NTCAC), and other public and private sector organizations. Downtown Dallas Inc. is a recognized transportation management association that promotes alternative travel modes and demand management among CBD businesses.
Planning Efforts to Date

Horseshoe Expansion
The Horseshoe Project, part of Project Pegasus, near downtown Dallas involves the reconstruction of IH 30 and IH 35E. It includes the replacement of both corridor bridges over the Trinity River and will add general purpose lanes, HOV/managed toll lanes, and collector/distributor lanes to better connect the two interstate highways to the downtown Dallas area. Pegasus Link Constructors won the project November 2012, and as of January 2013, final contract negotiations continue. Construction is anticipated to begin summer 2013.

Project Pegasus
Project Pegasus is a broad planning vision for reconstruction of IH 30 and IH 35E along Lower Stemmons, the Mixmaster and the Downtown Canyon. This includes interchange improvements for IH 35E and Dallas North Tollway, IH 30 and IH 35E, and IH 30 and IH 45.

Trinity Parkway
The Trinity Parkway is a planned new location toll road in Dallas extending from the interchange of SH 183 and IH 35E southeast to IH 45. The tollway will create a reliever route for the Stemmons Freeway corridor and downtown. The project is currently in environmental review with a decision anticipated in 2013.

Bicycle and Pedestrian
The 2011 Dallas Bike Plan recommends on-street bicycle facilities for several roadways that intersect this corridor. There are three existing trails within this corridor.

Next Steps
- The region is proceeding with development of the Horseshoe Project to reconstruct the IH 30 and IH 35E bridges over the Trinity River and the connections between these highways at the edge of downtown Dallas.
- Recommended use of Proposition 12 funds for engineering and right-of-way.
- Due to funding shortages and because this facility is parallel to the proposed Trinity Parkway, the corridor was removed from the financially constrained section of Mobility 2035, but remains in the vision component of the plan for consideration if additional funding is realized.
- The corridor is listed in Mobility 2035 as a potential corridor for truck lane restrictions.